
1 © Copyright 2016 Pivotal. All rights reserved. 1 © Copyright 2016 Pivotal. All rights reserved.

Cloud Native Design
Includes 12 Factor Apps

2 © Copyright 2016 Pivotal. All rights reserved.

Topics

•  12-Factor Applications
•  Cloud Native Design Guidelines

3 © Copyright 2016 Pivotal. All rights reserved.

12-Factor Application

•  http://12factor.net

•  Outlines architectural principles and patterns for modern

apps
–  Focus on scaling, continuous delivery, portable, and cloud

ready
•  Most of these principals are built in to the Cloud Foundry

platform...

4 © Copyright 2016 Pivotal. All rights reserved.

12-Factor Application
I. Codebase
One codebase tracked
in SCM, many deploys

II. Dependencies
Explicitly declare and
isolate dependencies

III. Configuration
Store config in the
environment

VI. Processes
Execute app as
stateless processes

V. Build, Release, Run
Strictly separate build
and run stages

IV. Backing Services
Treat backing services
as attached resources

IX. Disposability
Maximize robustness
with fast startup and
graceful shutdown

VIII. Concurrency
Scale out via the
process model

VII. Port binding
Export services via port
binding

XII. Admin processes
Run admin / mgmt tasks
as one-off processes

X. Dev/prod parity
Keep dev, staging, prod
as similar as possible

XI. Logs
Treat logs as event
streams

5 © Copyright 2016 Pivotal. All rights reserved.

12-Factor Application

•  Codebase
–  An application has a single codebase

•  Multiple codebases = distributed system (not an app)
–  Tracked in version control

•  Git, Subversion, Mercurial, etc.
–  Multiple deployments

•  Development, testing, staging, production, etc.
•  Don't hardcode anything that varies with deployment

I. Codebase
One codebase tracked
in SCM, many deploys

II. Dependencies
Explicitly declare and
isolate dependencies

III. Configuration
Store config in the
environment

6 © Copyright 2016 Pivotal. All rights reserved.

12-Factor Application

•  Dependencies
–  Packaged as jars (Java), RubyGems, CPAN (Perl)
–  Declared in a manifest

•  Maven POM, Gemfile / bundle exec, etc.
–  Don't rely on implicit dependencies from the deployment

environment

I. Codebase
One codebase tracked
in SCM, many deploys

II. Dependencies
Explicitly declare and
isolate dependencies

III. Configuration
Store config in the
environment

7 © Copyright 2016 Pivotal. All rights reserved.

12-Factor Application

•  Configuration
–  Anything that varies by deployment should not be hard-

coded
–  Environment variables or configuration server

recommended

I. Codebase
One codebase tracked
in SCM, many deploys

II. Dependencies
Explicitly declare and
isolate dependencies

III. Configuration
Store config in the
environment

8 © Copyright 2016 Pivotal. All rights reserved.

12-Factor Application

•  Backing Services
–  Service consumed by app as part of normal operations

•  DB, Message Queues, SMTP servers
•  May be locally managed or third-party managed

–  Services should be treated as resources
•  Connected to via URL / configuration
•  Swappable (change in-memory DB for MySQL)

VI. Processes
Execute app as
stateless processes

V. Build, Release, Run
Strictly separate build
and run stages

IV. Backing Services
Treat backing services
as attached resources

9 © Copyright 2016 Pivotal. All rights reserved.

12-Factor Application

•  Build, Release, Run
–  Build stage – converts codebase into build (version)

•  Including managed dependencies
–  Release stage – build + config = release
–  Run – Runs app in execution environment

•  In Cloud Foundry, these stages are clearly separated
with cf push

VI. Processes
Execute app as
stateless processes

V. Build, Release, Run
Strictly separate build,
release and run stages

IV. Backing Services
Treat backing services
as attached resources

10 © Copyright 2016 Pivotal. All rights reserved.

12-Factor Application

•  Processes
–  The app executes as one or more discrete running

processes
–  Stateless

•  Processes should not store internal state
–  Share nothing

•  Data needing to be shared should be persisted
–  Any necessary state is externalized as a backing service

VI. Processes
Execute app as
stateless processes

V. Build, Release, Run
Strictly separate build
and run stages

IV. Backing Services
Treat backing services
as attached resources

11 © Copyright 2016 Pivotal. All rights reserved.

12-Factor Application

•  Port Binding
–  The app is self-contained

•  For example, Tomcat is included in the droplet
–  Apps are exposed via port binding (including HTTP)

•  Every app instance is accessed via a URI and port number
–  One app can become another app's service

IX. Disposability
Maximize robustness
with fast startup and
graceful shutdown

VIII. Concurrency
Scale out via the
process model

VII. Port binding
Export services via port
binding

12 © Copyright 2016 Pivotal. All rights reserved.

12-Factor Application

•  Concurrency
–  Achieve concurrency by scaling out horizontally

•  Scale by adding more app instances
–  Individual processes are free to multithread

IX. Disposability
Maximize robustness
with fast startup and
graceful shutdown

VIII. Concurrency
Sca le ou t v i a t he
process model

VII. Port binding
Export services via port
binding

13 © Copyright 2016 Pivotal. All rights reserved.

12-Factor Application

•  Disposability
–  Processes should be disposable

•  Remember, they're stateless!
–  Should be quick to start

•  Enhances scalability and fault tolerance
–  Should exit gracefully / finish current requests

IX. Disposability
Maximize robustness
with fast startup and
graceful shutdown

VIII. Concurrency
Scale out via the
process model

VII. Port binding
Export services via port
binding

14 © Copyright 2016 Pivotal. All rights reserved.

12-Factor Application

•  Development, staging, production should be similar
–  This enables high quality, continuous delivery

XII. Admin processes
Run admin / mgmt tasks
as one-off processes

X. Dev/prod parity
Keep dev, staging, prod
as similar as possible

XI. Logs
Treat logs as event
streams

15 © Copyright 2016 Pivotal. All rights reserved.

12-Factor Application

•  Logs are streams of aggregated, time-ordered events
–  Apps are not concerned with log management

•  Just write to stdout
–  Separate log managers handle management

•  Logging as a service

•  Can be managed via tools like Papertrail, Splunk ...
–  Log indexing and analysis

XII. Admin processes
Run admin / mgmt tasks
as one-off processes

X. Dev/prod parity
Keep dev, staging, prod
as similar as possible

XI. Logs
Treat logs as event
streams

16 © Copyright 2016 Pivotal. All rights reserved.

12-Factor Application

•  Admin processes / management tasks run as one-off
processes
–  Run admin processes on the platform

•  Leverages platform knowledge and benefits
–  DB migrations, one time scripts, etc.
–  Use the same environment, tools, language as application

processes

XII. Admin processes
Run admin / mgmt tasks
as one-off processes

X. Dev/prod parity
Keep dev, staging, prod
as similar as possible

XI. Logs
Treat logs as event
streams

17 © Copyright 2016 Pivotal. All rights reserved.

12-Factor Application
I. Codebase
One codebase tracked
in SCM, many deploys

II. Dependencies
Explicitly declare and
isolate dependencies

III. Configuration
Store config in the
environment

VI. Processes
Execute app as
stateless processes

V. Build, Release, Run
Strictly separate build
and run stages

IV. Backing Services
Treat backing services
as attached resources

IX. Disposability
Maximize robustness
with fast startup and
graceful shutdown

VIII. Concurrency
Scale out via the
process model

VII. Port binding
Export services via port
binding

XII. Admin processes
Run admin / mgmt tasks
as one-off processes

X. Dev/prod parity
Keep dev, staging, prod
as similar as possible

XI. Logs
Treat logs as event
streams

18 © Copyright 2016 Pivotal. All rights reserved.

Topics

•  12-Factor Applications
•  Design Guidelines

19 © Copyright 2016 Pivotal. All rights reserved.

Session Management

•  Session use best avoided
–  In order to achieve massive scaling
–  Easy for RESTful servers

•  If sessions are essential
–  Add persistent session management

•  For example: Gemfire cache
–  Move session-data to a light-weight persistent store

•  Such as Redis key-value store

20 © Copyright 2016 Pivotal. All rights reserved.

Local File Access

•  Apps should not attempt to access the local file system
–  Short lived, not shared

•  Instead, use Service abstraction when flat files are
needed
–  Amazon S3, Google Cloud Storage, Dropbox, or Box

•  Examples: file-uploading
–  File Storage as a Service is coming

•  Or consider using a database
–  Redis: Persistent, in-memory data
–  Mongo DB: JSON document storage

21 © Copyright 2016 Pivotal. All rights reserved.

Logging

•  Loggregator will automatically handle all output logged to
stdout or syserr
–  Note: cf logs receives data on port 4443 (typically

blocked by corporate firewalls)
•  Don't use log-files

–  Local file system is generally not available
–  Loggregator will NOT handle log files made to the file

system or other sources
–  Write to stdout instead
–  Or consider writing log records to a fast, NoSql database

•  Can now be queried

22 © Copyright 2016 Pivotal. All rights reserved.

Port Limitations
•  Incoming port usage currently limited to HTTP and

HTTPS
–  Only 80, 443 open to incoming traffic

•  App instances can make calls to any port or protocol and
are controlled by Application Security Groups
–  Open 4443 inbound in your firewall for logging

R
ou

te
r

X

80 / 443 Only * 4443: secure websocket for PCF logging

23 © Copyright 2016 Pivotal. All rights reserved.

Summary

•  12-Factor Applications
–  Designing for The Cloud

•  Cloud Native Design Guidelines
–  Avoid using sessions or local file-system
–  Log to system error or system out
–  Restricted to HTTP and HTTPS

