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Topics

• Simplified History

• What are Microservices?
• Spring Cloud Services
• Migrating to Microservices

Good overview:

   http://martinfowler.com/articles/microservices.html 

http://martinfowler.com/articles/microservices.html
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Simplified Enterprise Compute History – I 

• As time went on, higher power machines were needed
(vertical scaling)

• The machines were named (like “pets”) and individually 
configured 

time

machine performance
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Simplified Enterprise Compute History – II 
• Eventually vertical scaling fails,

the model breaks down 
– Vertical scaling too expensive

(or not possible)
– Exponential demand could not

be met

• Ephemeral virtual machines and
containers are cloud native
– Horizontal, elastic infrastructure
– Everything is automated
– Not treated uniquely – like

“livestock” 

time

commodity
machines and

containersx
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Simplified Enterprise Application History – I 

• Enterprise applications were built as full stack
“monoliths”

• In general, monolith size grew as compute capabilities
grew 

size of the monolith

time
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Simplified Enterprise Application History – II 
• Monolith complexity and the move to a cloud infrastructure

requires a fundamentally different application architecture
– Inherently distributed and elastic

• Microservices following cloud native design principles are an
approach to developing on cloud infrastructure

time

x microservices

monoliths
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Monolithic vs. Microservice Architectures (Simplified)
• Classic three-tier application

Relational Database
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Service
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Service
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Note- Many monoliths have always had characteristics of microservices

• Microservices architecture
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Monoliths- Simplified

• Multi-purpose OS and
application servers runs
the “big app”

• Sparse, coordinated
releases

• Separate ops, DBAs, dev
teams

• Coupled dependencies

Data Access

Service

HTML JavaScript MVC

Service

“Monolith” Application
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Monoliths- Problems
• Complexity reduces agility

– “Hit a wall”
– Affects the ability to compete

• Difficult to understand and
contribute

• Coupling creates unintended
consequences and delays

• May not work well with cloud
infrastructure
– Not 12-factor conformant
– Doesn’t scale well

Data Access

Service

HTML JavaScript MVC

Service

“Monolith” Application

complexity

time
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Example- Amazon Switching to Microservices
• Sometime around 2002, Jeff Bezos

issued a mandate
– All teams will henceforth expose their data

and functionality through service interfaces
– Teams must communicate with each other

through these interfaces
• There will be no other form of inter-process

communication allowed

– It doesn’t matter what technology you use
– …

• This reinforced their microservices
strategy 

complexity

time

http://apievangelist.com/2012/01/12/the-secret-to-amazons-success-internal-apis/
http://thenewstack.io/led-amazon-microservices-architecture/
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Microservice Features
• API interaction only

– Loosely coupled
– Often RESTful APIs

• Bounded contexts / domain-driven design
– Single view of data

• Independently deployable apps
• Polyglot persistence

– Each service uses the most suitable storage system
– Relational DB, key-value store, document store …

• Multi-language (if desired)
• Independently scalable
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Microservice Teams

• Small teams communicating through API contracts
– “Two pizza” teams

• Develop, test and deploy each service independently
• Often test-driven

– Team A provides tests for team B to run on their
microservice- “this is what we need from your service”

– The tests must pass- that and the API is the contract
between teams

http://blog.idonethis.com/two-pizza-team/
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12 Factor Monolith
• A monolith can be a 12 factor app!
• There is no requirement to move to microservices

– Simpler projects probably don’t need it
– Big projects with a lot of team members probably do
– Probably should use the principles of microservices either

way
• For example, an API-only interface between components

complexity monoliths

microservices
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Tradeoffs

• Monolith
– Easier to build at first

– But ultimately more
complex to enhance and
maintain

• Microservices
– Harder to build at first
– Ultimately simpler to

extend, enhance and
maintain

– Scaling out (more
processes) easier

– Many more moving parts
to manage
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Why a Platform?
• Deploying distributed systems is complicated

– Security, resilience, redundancy, load-balancing
• But there are known patterns to solving distributed problems
• A platform provides the necessary tools

– Natural fit for deploying a microservice-based system
– Application instances are the unit of deployment
– Can be started, stopped and restarted independently on-

demand
– Provide dynamic load-balancing,

scaling and routing
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Spring Cloud Services

• The Cloud Foundry platform is designed for cloud-native
apps, whether they are monoliths or microservices-
based

• Spring Cloud Services provides added functionality for
applications with many microservices

• Implemented as services in the Marketplace
• Based on Netflix OSS and Spring Cloud

http://docs.pivotal.io/spring-cloud-services/
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Config Server

• Cloud Foundry provides configuration via environment
variables, as desired with 12-factor apps

• The Config Server is an externalized application configuration
service, extending the capabilities of the platform 
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Service Registry
• Services handled through the managed and user-provided services

work well in many cases
• For applications with many microservices, this can become difficult

to manage
• The service registry is an implementation of the service discovery

pattern



21© Copyright 2016 Pivotal. All rights reserved.

Circuit Breaker Dashboard
• Any application should handle

failures gracefully
• For applications with many

microservices, failures are much
more likely to occur

• Circuit breakers are a standard
pattern in applications for handling
failures

• Apps that implement circuit breakers
can bind to the Circuit Breaker
Dashboard service

• The dashboard consumes a
streaming endpoint exposed by the
app and renders the state of its
circuit breakers
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• Start with a new app (“greenfield”)
– Keep it simple, at first
– Apply 12-factor patterns

• http://12factor.net
– Cloud-ready at every stage
– Focus on APIs as contracts

• Decompose into microservice(s)
– Enables separately manageable and deployable units
– Each can use own storage solution (polyglot persistence)

My App

Route to Microservices: New App

App Main

MS 1 MS 2

http://12factor.net/
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Route To Microservices: Existing App
• Focus on parts of the app that require agility or have

operational issues
• Develop new functionality as microservices around existing

single-process application
– Use Facades/Adapters/Translators to integrate them

• “Strangle the monolith”
– Refactor existing monolith functionality into new microservices
– Long-term evolution:

• Monolith withers to nothing
• Or is reduced to a solid, reliable core that is not worth refactoring

(because we know it works)
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Summary

• A 12-factor app can be a monolith

• To optimize agility for large applications, use
microservices

• Cloud Foundry supports monolithic and microservices-
based applications, as long as they are 12-factor

• Spring Cloud Services excels at handling applications
with many microservices
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