
Characteristics of 
Monolithic Applications



• Application contains: 

• The UI 

• All the back-end logic to support 
the needs of the application 

• Often includes cross-cutting 
concerns:  authentication, admin 
user interface, dashboards, even 
scheduled jobs

The Monolith
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• Large body of code 

• Self-contained application 

• Many teams could be working on a single codebase 

• Coordination of work not trivial 

• Releases relatively infrequent

Typified by..
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Problems 
with 

Monolithic Applications



Coordinating Deployments

• When multiple teams deploy “into” the same war or ear file, their development 
efforts are coupled and must be coordinated 

• Example: team A is ready to deploy a new feature, it often must wait until all 
other teams are ready as well 

• There are ways to mitigate this, for example: using feature toggles
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Continuous 
Integration

6



Continuous Integration

The process of integrating your work with the rest of the team: 

• Pull latest version of code from version control 

• Implement a feature or bug fix (with tests) 

• Run tests, see them pass 

• Merge upstream changes 

• Re-run tests, see them pass 

• Push your changes upstream

https://martinfowler.com/articles/continuousIntegration.html
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Relationship between team size 
and difficulty of doing CI?

• Experiences working on a large team? 

• How easy is it to commit your code into the mainline? 

• How often do you have to merge others’ code changes into your copy of the 
codebase? 

• How different would it be on a 6-person team vs a 60-person team?
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With monolithic applications.. 
because we have a large number of developers, 

integration is harder. 

This affects velocity
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With monolithic applications.. 
because coordination is harder, 

occasions where all features can be deployed are 
less frequent
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..requires deployment processes 
be put in place:

• Scheduled, coordinated deployments 

• Code freezes 

• Necessitates the creation of branches, which must be merged back into the 
mainline, and further complicates integration 

• Higher likelihood of deployment delays

12



We can reason about 
deploying a single commit to 
production 

It’s less straightforward to 
reason about the effect of a 
deployment when it represents 
1,000 commits made by a half 
dozen teams over a period of 
six months Commits over time

How big a change are we 
deploying to production?
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• Less frequent releases imply greater risks with each deployment 

• A certain degree of fear associated with deployments to production 

• Often involves working late hours, and a deployment becomes an event, 
involving a lot of people..
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Disband the Deployment Army 
Michael Nygard

https://www.youtube.com/watch?v=Luskg9ES9qI
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Notice how the area under the curve is significantly smaller when 
deployments are more frequent

Increasing the Frequency of Deployments

Weeks

17



Scaling

• How do we scale a monolithic 
application? 

• Cannot scale each component 
independently 

• Scaling monoliths is usually not 
resource efficient
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How we should 
scale..
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Tolerance for Failure

• A bug in any of the logic in the monolithic application could bring down the entire 
process or application instance 

• Any feature exhibiting poor performance affects the entire application 

• Most monolithic applications are tested extensively, requiring time and effort, and 
contributing to less frequent releases
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Migrating to 
MicroServices

Where to start?
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Greenfield Applications

• It’s not always evident at the outset of 
a project how to organize or divide the 
domain into bounded contexts 

• Often simpler to start with a monolith 

• As the applications grows and evolves, 
look for obvious opportunities to 
extract MicroServices

Monoliths

MicroServices
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Legacy Applications

• Stop adding new features into the monolith.  Prefer to write new features as 
standalone microservices 

• Eric Evans describes the anticorruption layer, an approach of integrating new 
code with old code in a way that does not corrupt the new model.  i.e. establish 
APIs and Contracts 

• Refactoring approach:  the Strangler Pattern
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Strangler Pattern

• Described by Martin Fowler in article named the “Strangler 
Application” 

• The approach is akin to how strangler vines slowly grow 
around a tree, and slowly strangle the tree and take its place 

• In software, it’s a refactoring strategy where we slowly 
replace legacy code with standalone microservices, and, 
over time “strangle” the monolith

https://www.martinfowler.com/bliki/StranglerApplication.html
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• Idea of slowly shrinking a monolith by 
replacing some of its sub-domains with 
standalone microservices 

• Involves the use of a proxy in front of the 
backing services that can be configured to 
direct requests to the new microservices as 
they are introduced 

• Over time the monolith is either completely 
replaced or shrinks to a point where what 
remains is a much smaller and stable 
application

https://paulhammant.com/2013/07/14/legacy-application-strangulation-case-studies/
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