
Characteristics of
Monolithic Applications

• Application contains:

• The UI

• All the back-end logic to support
the needs of the application

• Often includes cross-cutting
concerns: authentication, admin
user interface, dashboards, even
scheduled jobs

The Monolith

2

• Large body of code

• Self-contained application

• Many teams could be working on a single codebase

• Coordination of work not trivial

• Releases relatively infrequent

Typified by..

3

Problems
with

Monolithic Applications

Coordinating Deployments

• When multiple teams deploy “into” the same war or ear file, their development
efforts are coupled and must be coordinated

• Example: team A is ready to deploy a new feature, it often must wait until all
other teams are ready as well

• There are ways to mitigate this, for example: using feature toggles

5

Continuous 
Integration

6

Continuous Integration

The process of integrating your work with the rest of the team:

• Pull latest version of code from version control

• Implement a feature or bug fix (with tests)

• Run tests, see them pass

• Merge upstream changes

• Re-run tests, see them pass

• Push your changes upstream

https://martinfowler.com/articles/continuousIntegration.html
7

Relationship between team size
and difficulty of doing CI?

• Experiences working on a large team?

• How easy is it to commit your code into the mainline?

• How often do you have to merge others’ code changes into your copy of the
codebase?

• How different would it be on a 6-person team vs a 60-person team?

8

In
te

gr
at

io
n

C
om

pl
ex

ity

of developers

Integration Complexity as a
function of # of developers

9

With monolithic applications..
because we have a large number of developers,

integration is harder. 

This affects velocity

10

With monolithic applications..
because coordination is harder,

occasions where all features can be deployed are
less frequent

11

..requires deployment processes
be put in place:

• Scheduled, coordinated deployments

• Code freezes

• Necessitates the creation of branches, which must be merged back into the
mainline, and further complicates integration

• Higher likelihood of deployment delays

12

We can reason about
deploying a single commit to
production

It’s less straightforward to
reason about the effect of a
deployment when it represents
1,000 commits made by a half
dozen teams over a period of
six months Commits over time

How big a change are we
deploying to production?

De
lta

 b
et

w
ee

n
de

v
an

d
pr

od
13

De
lta

 b
et

w
ee

n
de

v
an

d
pr

od

Commits over timeMonths

Deploy to Prod 
Delta goes back to zero

14

• Less frequent releases imply greater risks with each deployment

• A certain degree of fear associated with deployments to production

• Often involves working late hours, and a deployment becomes an event,
involving a lot of people..

15

Disband the Deployment Army
Michael Nygard

https://www.youtube.com/watch?v=Luskg9ES9qI
16

De
lta

 b
et

w
ee

n
de

v
an

d
pr

od

Commits over timeMonths

Deploy to Prod 
Delta goes back to zero

Notice how the area under the curve is significantly smaller when
deployments are more frequent

Increasing the Frequency of Deployments

Weeks

17

Scaling

• How do we scale a monolithic
application?

• Cannot scale each component
independently

• Scaling monoliths is usually not
resource efficient

18

How we should
scale..

19

Tolerance for Failure

• A bug in any of the logic in the monolithic application could bring down the entire
process or application instance

• Any feature exhibiting poor performance affects the entire application

• Most monolithic applications are tested extensively, requiring time and effort, and
contributing to less frequent releases

20

Migrating to
MicroServices

Where to start?

21

Greenfield Applications

• It’s not always evident at the outset of
a project how to organize or divide the
domain into bounded contexts

• Often simpler to start with a monolith

• As the applications grows and evolves,
look for obvious opportunities to
extract MicroServices

Monoliths

MicroServices

C
om

pl
ex

ity
22

Legacy Applications

• Stop adding new features into the monolith. Prefer to write new features as
standalone microservices

• Eric Evans describes the anticorruption layer, an approach of integrating new
code with old code in a way that does not corrupt the new model. i.e. establish
APIs and Contracts

• Refactoring approach: the Strangler Pattern

23

Strangler Pattern

• Described by Martin Fowler in article named the “Strangler
Application”

• The approach is akin to how strangler vines slowly grow
around a tree, and slowly strangle the tree and take its place

• In software, it’s a refactoring strategy where we slowly
replace legacy code with standalone microservices, and,
over time “strangle” the monolith

https://www.martinfowler.com/bliki/StranglerApplication.html

24

• Idea of slowly shrinking a monolith by
replacing some of its sub-domains with
standalone microservices

• Involves the use of a proxy in front of the
backing services that can be configured to
direct requests to the new microservices as
they are introduced

• Over time the monolith is either completely
replaced or shrinks to a point where what
remains is a much smaller and stable
application

https://paulhammant.com/2013/07/14/legacy-application-strangulation-case-studies/
25

