
Where do MicroServices
come from?

An approach to building and deploying applications  

that evolved from organizations
facing issues with monolithic approach  

when their applications grew, became more complex, needed
to scale, and development velocity was slowing

2

• Jeff Bezos mandate, 2002:

- All teams will henceforth expose their data and functionality through
service interfaces.

- Teams must communicate with each other through these interfaces.

- There will be no other form of inter-process communication allowed:
no direct linking, no direct reads of another team’s data store, no
shared-memory model, no back-doors whatsoever. The only
communication allowed is via service interface calls over the network.

• Werner Vogels: you build it, you run it

3

Netflix

Adrian Cockcroft:

MicroServices grew out of our culture, and the way that we
organized work into small independent teams

4

Characteristics of
MicroService Architectures

5

Break deployment dependencies

Each team works on.. 
 a different codebase,  
 different version control repository,  
 a different app, deployed on its own schedule,  
 without the need to coordinate its work with other teams

6

Questions

• Along what lines do we break the larger application into multiple smaller
applications?

• What is the composition of the team?

• How do these smaller applications communicate with one another?

• How do I transition from my current monolithic application to this new model?

7

Domain-Driven Design (DDD)

• Book by Eric Evans, 2003

• Modeling the Domain, aggregate
roots, bounded contexts,
anticorruption layers, and more..

8

Business Capability Teams

9

Bounded Contexts

10

Traditional IT Teams

• Grouped by speciality

• Different vocabulary, tools,
management, incentive structures

• Different views on the role of IT

• Heavyweight processes to bridge the
gap

• Opposed to moving fast

11

Silos to DevOps

• Goal: Deliver value rapidly and safely

• Shared vocabulary, tools, and
incentive structures

• Bureaucratic processes replaced with
trust and accountability

• Common leadership

12

Cross-functional teams

• Break the silos

• Teams consist of talent across multiple disciplines: development, business analysis,
QA, ops, etc..

• Goal is for the team to be self-sufficient, independent

13

Conway’s law

Any organization that designs a system (defined broadly)
will produce a design whose structure is a copy of the

organization's communication structure.

14

Small Teams

15

16

Velocity

• Multiple independent teams working in parallel

• Deploying frequently

• At their own cadence

17

Pre-requisites to frequent
deployments

• Small, simple application

• Low complexity

• Small, independent team

• Low cost of continuous integration within team

• Team must be largely independent of other teams

18

Te
am

Te
am

Te
am

Te
am

Days

Parallel work streams combined with
frequent deployments

19

• Assume 100 teams, each deploying on average weekly

• Translates to 100 deployments per week, or on average 14 deployments per day

• So velocity can sky rocket, all the while keeping complexity low

• At any one point in time, some team is deploying to production

A simple calculation..

20

https://github.com/blog/1241-deploying-at-github

GitHub Deployment Stats

41,679 builds

12,602 deploys

“The lull in mid-August was our company summit, which kicked off
the following week with a big dose of inspiration. Our busiest day
yet, Aug. 23, saw 563 builds and 175 deploys.”

21

Amazon deploys new
software to production

every 11.6 seconds.

22

Risk

• Because deployments are frequent and represent changes to a simple application,
the risk inherent in a deployment is significantly lower

• Because deployments are performed so often, they tend to get automated, which
also lowers the risk of something going wrong

• No checklists, repeatable process

• Deployments to production become non-events

23

Runtime

• If one MicroService goes down, most of the system is still running — inherently
lower risk (contrast with monoliths)

• Example: If the Amazon recommendation service is down, are you prevented
from checking out?

• Scale out: replace large machines with container technology, run multiple load-
balanced instances of services

24

Deployment Automation

• Build pipelines and Continuous Delivery

• Techniques: blue-green deployments and canary deployments allow zero-
downtime pushes to production

• Reliance on automated testing

25

More on automation

• No checklists

• Manual == error-prone

• Want repeatable processes

• Removes bottlenecks, delays

• Frees developers to work on higher-value tasks

• Recreate environments frequently

26

The Self-Service API

• In most situations, teams don’t have to physically communicate with other teams
to get things done: removes bottlenecks!

• Means each team is more independent, not waiting on another team to deliver
something

• Lookup published API

27

Adapted from: http://www.slideshare.net/adriancockcroft/goto-berlin

Make the platform a self-service API too!

28

http://www.slideshare.net/adriancockcroft/goto-berlin

As a codebase grows larger, 
 

microServices offer a mechanism to keep complexity low 
 

by splitting the codebase into sets of smaller, largely
independent applications

29

What’s easier?

• Each team works independently

• Developer velocity is high

• Deployments become non-events

• More flexibility vis-a-vis choice of programming language, persistence
technology

• Simpler code to maintain

30

What’s harder?

• Must maintain and deploy more codebases, more applications. Without
automation, this can become a real problem

• Service calls are no longer a method call away

• Application becomes a distributed system: distributed computing is hard

• More integration points: what if a contract with another service changes? Need
contract testing

31

MicroService Pre-requisites

Maturity Model, “you must be this tall to use MicroServices”

https://martinfowler.com/bliki/MicroservicePrerequisites.html

• Rapid provisioning

• Basic monitoring

• Rapid application deployment

32

https://martinfowler.com/bliki/MicroservicePrerequisites.html

Platforms

A Platform as a Service, or PaaS, plays a significant role in tipping the scales in favor
of MicroServices.

A PaaS..

• Makes it trivial to deploy and scale applications

• Provides a consistent deployment API

• Leverages container technology, makes efficient utilization of resources

• Makes it easy to create environments on demand

• Automatically restarts services

33

