
MicroServices Patterns

• Michael Nygard, 2007

• Describes fault tolerance patterns that
became the inspiration for many of the
implementations now in use with
MicroServices

2

Circuit Breakers

• Objective is to make a distributed system of microservices less vulnerable to failures

• Prevents failures in a microservice from impacting calling applications, and
cascading upstream to calling microservices

• Limit scope (or “blast radius”) of a failure, degrade gracefully is possible, and
automate recovery when failing service comes back online

• Implementation: Netflix Hystrix

3

Bulkheads

Applications in software:  
 
Compartmentalizing thread pools prevents a
single misbehaving service from taking down
a client application instance

Design comes from the ship
construction:

4

Service Registries

• A microservice architecture consists of many collaborating service instances that
much know each others’ address

• A cloud environment implies application instances that come and go, that are
dynamically scaled

• Service registries provide dynamic application instance lookup capabilities

• Pattern prevalent in distributed systems: Service Locators, Membership
Coordinators

• Examples: HashiCorp Consul, Apache ZooKeeper, Netflix Eureka

5

Load Balancing

• Load balancing traditionally available as an independent appliance (F5) or
software component (HAProxy)

• Move load balancing capability directly into the consumer microservice

• Netflix Ribbon: a client-side load-balancing library

6

Distributed Tracing

• In a monolith, the majority of the call graph is contained in a single process. A stack
trace can easily help us see the context of handling an http request. Not so with
microservices.

• Zipkin is an implementation of a distributed tracing system

• Spring Cloud Sleuth (zipkin compatible) can easily instrument a Spring Boot application
to trace calls across microservice process boundaries.

7

Configuration as a Service

• Idea of separating application configuration from codebase, serving configuration
over REST endpoints

• Centralizes configuration for multiples applications and multiple environments
(staging, QA, prod, etc..) in a single repository

• Benefits include ability to alter and reload configuration without restarting application,
altering logging levels, turning on/off feature toggles

• Spring Cloud Config Server is an open source implementation, backed by a git
repository naturally supports retaining configuration history and audit trail, supports
encryption of sensitive configuration properties, and designed to integrate with
Spring Boot applications.

8

Proxies and Edge Services

• Request interception modeled in a microservice architecture by routing requests to
back-end services via a proxy or edge service

• Has many uses: proxies can be used as part of a strangler pattern strategy, can be use
for rate limiting, authentication, request normalization and enrichment, to avoid
duplicating common request processing logic into multiple back-end services..

• Examples: Netflix Zuul, Pivotal Cloud Foundry’s Route Services

9

