Service Discovery
with Netflix Eureka

Spring Cloud

Spring Cloud Contract. supports and facilitates contract testing

Spring Cloud Netflix: umbrella project offering a number of Netflix services and libraries
adapted for Spring: o

o Hystrix, Eureka, Ribbon, Feign, Zuul Y
NETFLIX
Spring Cloud Config Server: configuration as a service

Spring Cloud Sleuth: distributed tracing

Service Registries

A microservice architecture consists of many collaborating service instances that
much know each others’ address

A cloud environment implies application instances that come and go, that are
dynamically scaled

Service registries provide dynamic application instance lookup capabilities

Pattern prevalent in distributed systems: Service Locators, Membership
Coordinators

Examples: HashiCorp Consul, Apache ZooKeeper, Netflix Eureka

General Concept

Service

Registry

1. reqgister

2. discover

‘ -----------------------------

3. connect

Eureka Architecture

Application
Service

Eureka
Cllent

us-east-1c

Register,

Eureka Server

<t

us-east-1d

Application
Client

Eureka
Cllent

Replicate

>

Eureka Server

us-east-le

Repl

Ta
=
«| 2o
S| &

Client

Eureka
Cllent

=
cate

Eureka Server

o Application
Application ~aeP Service

1

Eureka
Cllent

Endpoints

o Register (and de-register)
e Renew Registration

e Fetch Registry

See https.//qgithub.com/Netflix/eureka/wiki/Eureka-RES T-operations

6

https://github.com/Netflix/eureka/wiki/Eureka-REST-operations

Register

Service registers with eureka on startup

With Spring Cloud, the spring.application.name property is used as the
registration key (or virtual hostname)

Registration can be turned off by setting configuration property
eureka.client.registerWithEureka to false

eureka.client.serviceUrl.defaultZone can be used to specifty default url for
contacting eureka

Renew Registration

e Services must periodically renew their registration, which would otherwise
expire

e aka “Heartbeats”

e The configuration property
eureka.instance.leaseRenewallIntervalInSeconds governs how often a

service renews their registration

Fetch Regqistry

Clients fetch a copy of the reqgistry periodically
An optimization, allows lookups to be performed directly against a cached copy

eureka.client.fetchRegistry can be used to control whether to fetch the
reqgistry

eureka.client.registryFetchIntervalSeconds controls how frequently to fetch
a hew copy

The BEureka Dashboard

) spring JOME LAST1000 SINCE STARTUP

System Status

Environment test Current time 2017-11-21T13:13:25 -0600
Data center default Uptime 00:00

Lease expiration enabled false

Renews threshold 5

Renews (last min) o)

DS Replicas

Instances currently registered with Eureka

Application AMIs Availability Zones Status
FORTUNE n/a (1) (1) UP (1) - eitans-mbp:fortune:8081
GREETING n/a (1) (1) UP (1) - eitans-mbp:greeting

10

Configuring a eureka instance or client

Add build dependency: spring-cloud-starter-eureka
Configure service with spring.application.name property
Annotate Spring Boot Application class with @EnableDiscoveryClient

Clients auto-wire a EurekaClient instance

11

Eureka Lookup Example

String getFortune() {
String fortuneUrl = lookupUrlFor(appName: "FORTUNE");
Map map = restTemplate.getForObject(fortuneUrl, Map.class);
return (String) map.get("fortune");

}

private String lookupUrlFor(String appName) {

InstanceInfo instance = eurekaClient.getNextServerFromEureka(appName, secure: false);
return instance.getHomePageUrl();

}

12

