Load Balancing
with Netflix Ribbon

Spring Cloud

Spring Cloud Contract. supports and facilitates contract testing

Spring Cloud Netflix: umbrella project offering a number of Netflix services and libraries
adapted for Spring: o

e Hystrix, Eureka, Ribbon, Feign, Zuul Y
NETFLIX
Spring Cloud Config Server: configuration as a service

Spring Cloud Sleuth: distributed tracing

Traditional Load Balancing

Traditionally, load balancing is performed by a dedicated appliance: either an F5 or
a software component such as HAProxy

Configured manually
Entry point for HT TP requests from end users. i.e. Public-facing

Fronts monolithic server instances

Load Balancing in a Microservice Architecture

Embed load balancing logic in consumer (caller)
Configuration is dynamic and automatic
Not public-facing

Load balancing is between services (inter-service)

Service Instances are scaled out

~ R g)

Which instance to target?
Consumer _—m$s€m€$mn m —_—_o_o o o oeooeoem_—™—™—_—>

g y N—)

Producers

A eureka lookup yields multiple service instances for a given service name

Netflix Ribbon

A library that implements load balancing algorithms “out of the box”
Added as a dependency, runs in-process in the consumer (caller)

Automatically integrates with eureka to get the list of urls to load-balance
across for each instance of a given service

Configurable: choice of load balancing algorithms

Works in Concert with Eureka

Service
Registry

1. Reqister
' 2. Obtain
r_ server list
||||| Load
-------- Consumer
3. Load bhalance

connections

Ribbon runs in-process in the consumer, gets its list of producers from Eureka, and so does not require manual

configuration of the server list
.

Inter-service Load Balancing

API (Edge) Service

(instance 1; us-east-1 Zone A)

Ribbon Client
(Movie Service)

F

pstome

Public Requests

Amazon ELB

v

API (Edge) Service
(instance 2; use-east-1 Zone E

Ribbon Client
(Review Service)

3sh (custom LB)

r

More
Ribbon

L ——

Ribbon Client L Ribbon Client
{Movie Service) | B| | (Review Service) | B

——_—

P

Zone Aware RoundRobin

Components of a Ribbon Load Balancer

e Rule - alogic component to determine which server to return from a list

e Ping - a component running in background to ensure liveness of servers

e ServerlList - this can be static or dynamic. If it is dynamic (as used by
DynamicServerListLoadBalancer), a background thread will refresh and filter

the list at certain interval

| oad Balancing Rule Options

RoundRobinRule
WeightedResponselimeRule
RandomRule
BestAvailableRule

AvailabilityFilteringRule

See: https.//github.com/Netflix/ribbon/wiki/Working-with-load-balancers

10

Configuration

Default

myclient.ribbon.ServerListRefreshinterval

The time in milliseconds after which the caller will observe a timeout and walk away from the command 30 seconds
execution
myclient.ribbon.NFLoadBalancerRuleClassName

Availability-
The implementation of the load balancing Rule (strategy) -FilteringRule
myclient.ribbon.NFLoadBalancerPingClassName
Strategy for pinging servers NoOpPing

myclient.ribbon.MaxAutoRetriesNextServer

Max number of next servers to retry (excluding the first server)

See: https.//github.com/Netflix/ribbon/wiki/Getting-Started

11

https://github.com/Netflix/ribbon/wiki/Getting-Started

Ribbon Load Balancing Example

private final LoadBalancerClienf loadBalancerClient;

public FortuneServiceClient(RestTemplate restTemplate, LoadBalancerClient loadBalancerClient) {
this.restTemplate = restTemplate;
this.loadBalancerClient = loadBalancerClient;

}

@HystrixCommand(fallbackMethod = "defaultFortune")

String getFortune() {
String fortuneUrl = lookupUrlFor(appName: "FORTUNE");
Map map = restTemplate.getForObject(fortuneUrl, Map.class);
return (String) map.get("fortune");

}

return String. format("http://%s:%s : . , instance.getPort());

}

Basically, swap EurekaClient with LoadBalancerClient
APl changes slightly: use the choose() method, which returns a Servicelnstance type

[-

12

Alternative: @LoadBalanced Restlemplate

11 aQ @SpringBootApplication
12 @EnableCircuitBreaker
13 @EnableDiscoveryClient
14 b e, Ve .y public class GreetingApplication {

16) 'bublic static void main(String[] args) {
17 SpringApplication.run(GreetingApplication.class, args);

1 "_;15 }

20 - e B Cdl
21 @LoadBa lanced
22 public RestTemplate restTemplate() {

73 return new RestTemplate();

24 +

13

Restlemplate Usage

private final RestTemplate restTemplate;

public FortuneServiceClient(RestTemplate restTemplate) {
this.restTemplate = restTemplate;

}

@HystrixCommand(fallbackMethod = "defaultFortune")
String getFortune() {

Map map = restTemplate.getForObject{ url: "http://fortune/" D> Map.class);

return (String) map.get("fortune");

}

e URL encodes service name (as registered in Eureka)

o Replacement of key with actual service instance returned by load
balancing strategy is performed automatically internally to the
restTemplate API call (delegates to LoadBalancerClient)

14

