
Spring Cloud Config

Spring Cloud

• Spring Cloud Contract: supports and facilitates contract testing

• Spring Cloud Netflix: umbrella project offering a number of Netflix services and libraries
adapted for Spring:

• Hystrix, Eureka, Ribbon, Feign, Zuul

• Spring Cloud Config Server: configuration as a service

• Spring Cloud Sleuth: distributed tracing

2

About

• Developed by the Spring team

3

Initially

• Traditionally with Spring applications, configuration is stored with the
application, and fetched from the class path

• Projects place configuration in a .properties file under src/main/resources

4

Evolution

Spring also supports reading configuration from:

• Yaml files (.yml)

• Java system properties

• Environment variables

5

Config Server: Main Concepts

• Externalization of configuration (outside the application)

• Centralization of configuration information for multiple services and
environments

• Configuration as a service  
i.e. HTTP/REST endpoints for reading application configuration

6

Design

• Notion of a "backend" where configuration files are stored

• Config server reads configurations from the back-end and exposes HTTP REST
endpoints for applications to consume

• Conventions: how files and REST endpoints are named make it easy to expose
configuration for different applications in different environments

7

Backends

• Supports multiple types of backends

• Options include: Git, Subversion, HashiCorp Vault, File System, JDBC

• Also supports a composite of backends

8

Conventions

• An application’s spring.application.name is used to identify an application

• The names of files stored in the backend

• The paths for the endpoints exposed by the config server have a specific pattern

9

Backend file naming

• Default Pattern: 
 
{application}-{profile}.[properties|yml]

• Example: 
 
spring.application.name: greeting 
spring.profiles.active: qa 
 
Configuration stored in a file: greeting-qa.yml (or greeting-qa.properties)

NOTE: The pattern can be customized via a configuration property named searchPaths

10

HTTP Service Endpoints

/{application}/{profile}[/{label}]

/{application}-{profile}.yml

/{label}/{application}-{profile}.yml

/{application}-{profile}.properties

/{label}/{application}-{profile}.properties

- With the Git backend, {label} maps to a branch name.

- {label} is optional, and if not specified, defaults to master

11

Configuration hierarchy

• Generic configuration that applies to all applications in all environments
can be placed in a file specially-named application.yml

• Generic configuration that applies to all applications in a specific
environment can be placed in a file specially-named application-
{profile}.yml

12

Example
Given:

spring.application.name: greeting

spring.profiles.active: qa

Config server endpoint becomes: http://{host}:{port}/greeting/qa

If any of the below files exist, their configuration would be returned as a single json response:

application.yml (or .properties)
application-qa.yml
greeting.yml

greeting-qa.yml

Configuration properties in the more specifically-named files override a setting in the more
general file.

13

14

15

Setting up the Server

1. Add dependency: spring-cloud-config-server

2. Annotate Spring Boot application class with @EnableConfigServer

3. Example configuration of git backend to a public repository:

application.properties:

spring.cloud.config.server.git.uri=https://github.com/{username}/config-repo.git

Many more configuration options exist for the server (consult project reference manual).

16

https://github.com/

Configuring Clients

1. Add dependency: spring-cloud-starter-config

2. Set spring.cloud.config.uri for the location of the configuration server

3. spring.application.name must be set in the config file bootstrap.yml, not
application.yml

4. Alternatively, if config server is registered with Eureka, can lookup config server via
eureka by setting cloud.config.discovery.enabled

17

Refreshing the Configuration

• On initialization, the client fetches its configuration from the config server (as a
function of the spring application name and the active profiles)

• Spring Boot Actuator dependency provides a /refresh endpoint over HTTP POST,
used to instruct the client to re-fetch updates to the configuration from the config
server

• Procedure:

1. Update the configuration in the backend (commit/push the change)

2. Send an HTTP POST to the application’s /refresh endpoint

• The Spring application context will be reloaded with the updated configuration

18

Which Properties Can be Refreshed?

• logging levels

• Spring Beans of type @ConfigurationProperties

• Any Spring Beans annotated with Spring’s @RefreshScope

19

Example

20

Spring Cloud Bus

• A solution to the problem of having to refresh multiple instances of multiple
applications, without having to send each application instance a /refresh

• Leverages a message bus, supports AMQP protocol (e.g. RabbitMQ), and Kafka

• Exposes its own /bus/refresh endpoint, where receiving application instance
broadcasts refresh message to all other instances

See: https://cloud.spring.io/spring-cloud-bus/
21

Config Server + Spring Cloud Bus

• The /bus/refresh endpoint
provides a destination
parameter to support
specifying which applications
and application instances to
target

22

Benefits of Config Server

• All configuration is available in one place (one place to review and modify configuration)

• Separation of application development lifecycle from configuration lifecycle

• Ability to re-configure aspects of a running application without downtime (e.g. log level,
feature toggles)

• Supports encryption of sensitive configuration properties using a number of
mechanisms (symmetric encryption, asymmetric key pair)

• Choice of git backend provides complete configuration history, auditability (who made
what configuration change, and when)

23

